NAD-Independent L-Lactate Dehydrogenase Is Required for L-Lactate Utilization in Pseudomonas stutzeri SDM
نویسندگان
چکیده
BACKGROUND Various Pseudomonas strains can use L-lactate as their sole carbon source for growth. However, the L-lactate-utilizing enzymes in Pseudomonas have never been identified and further studied. METHODOLOGY/PRINCIPAL FINDINGS An NAD-independent L-lactate dehydrogenase (L-iLDH) was purified from the membrane fraction of Pseudomonas stutzeri SDM. The enzyme catalyzes the oxidation of L-lactate to pyruvate by using FMN as cofactor. After cloning its encoding gene (lldD), L-iLDH was successfully expressed, purified from a recombinant Escherichia coli strain, and characterized. An lldD mutant of P. stutzeri SDM was constructed by gene knockout technology. This mutant was unable to grow on L-lactate, but retained the ability to grow on pyruvate. CONCLUSIONS/SIGNIFICANCE It is proposed that L-iLDH plays an indispensable function in Pseudomonas L-lactate utilization by catalyzing the conversion of L-lactate into pyruvate.
منابع مشابه
Efficient Production of Pyruvate from DL-Lactate by the Lactate-Utilizing Strain Pseudomonas stutzeri SDM
BACKGROUND The platform chemical lactate is currently produced mainly through the fermentation of sugars presented in biomass. Besides the synthesis of biodegradable polylactate, lactate is also viewed as a feedstock for the green chemistry of the future. Pyruvate, another important platform chemical, can be produced from lactate through biocatalysis. METHODOLOGY/PRINCIPAL FINDINGS It was est...
متن کاملRationally re-designed mutation of NAD-independent l-lactate dehydrogenase: high optical resolution of racemic mandelic acid by the engineered Escherichia coli
BACKGROUND NAD-independent L-lactate dehydrogenase (L-iLDH) from Pseudomonas stutzeri SDM can potentially be used for the kinetic resolution of small aliphatic 2-hydroxycarboxylic acids. However, this enzyme showed rather low activity towards aromatic 2-hydroxycarboxylic acids. RESULTS Val-108 of L-iLDH was changed to Ala by rationally site-directed mutagenesis. The L-iLDH mutant exhibited mu...
متن کاملGenome sequence of Pseudomonas stutzeri SDM-LAC, a typical strain for studying the molecular mechanism of lactate utilization.
Pseudomonas stutzeri SDM-LAC is an efficient lactate utilizer with various applications in biocatalysis. Here we present a 4.2-Mb assembly of its genome. The annotated four adjacent genes form a lactate utilization operon, which could provide further insights into the molecular mechanism of lactate utilization.
متن کاملReconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocatalyst for l-2-hydroxy-carboxylate production
As an important method for building blocks synthesis, whole cell biocatalysis is hindered by some shortcomings such as unpredictability of reactions, utilization of opportunistic pathogen, and side reactions. Due to its biological and extensively studied genetic background, Pseudomonas putida KT2440 is viewed as a promising host for construction of efficient biocatalysts. After analysis and rec...
متن کاملNAD-dependent lactate dehydrogenase catalyses the first step in respiratory utilization of lactate by Lactococcus lactis☆
Lactococcus lactis can undergo respiration when hemin is added to an aerobic culture. The most distinctive feature of lactococcal respiration is that lactate could be consumed in the stationary phase concomitantly with the rapid accumulation of diacetyl and acetoin. However, the enzyme responsible for lactate utilization in this process has not yet been identified. As genes for fermentative NAD...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012